- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal, Arav (1)
-
Akhuseyinoglu, Kamil (1)
-
Brusilovsky, Peter (1)
-
Hassany, Mohammad (1)
-
Hendrawan, Rully Agus (1)
-
Lekshmi_Narayanan, Arun Balajiee (1)
-
Savelka, Jaromir (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As large language models (LLMs) show great promise in generating a wide spectrum of educational materials, robust yet cost-effective assessment of the quality and effectiveness of such materials becomes an important challenge. Traditional approaches, including expert-based quality assessment and student-centered evaluation, are resource-consuming, and do not scale efficiently. In this work, we explored the use of pre-existing student learning data as a promising approach to evaluate LLM-generated learning materials. Specifically, we used a dataset where students were completing the program construction challenges by picking the correct answers among human-authored distractors to evaluate the quality of LLM-generated distractors for the same challenges. The dataset included responses from 1,071 students across 22 classes taught from Fall 2017 to Spring 2023. We evaluated five prominent LLMs (OpenAI-o1, GPT-4, GPT-4o, GPT-4o-mini, and Llama-3.1-8b) across three different prompts to see which combinations result in more effective distractors, i.e., those that are plausible (often picked by students), and potentially based on common misconceptions. Our results suggest that GPT-4o was the most effective model, matching close to 50% of the functional distractors originally authored by humans. At the same time, all of the evaluated LLMs generated many novel distractors, i.e., those that did not match the pre-existing human-authored ones. Our preliminary analysis shows that those appear to be promising. Establishing their effectiveness in real-world classroom settings is left for future work.more » « lessFree, publicly-accessible full text available March 3, 2026
An official website of the United States government
